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ABSTRACT: Continuing our recent work hep-th/0411173, we study the statistics of four-

dimensional, supersymmetric intersecting D-brane models in a toroidal orientifold back-
ground. We have performed a vast computer survey of solutions to the stringy consistency
conditions and present their statistical implications with special emphasis on the frequency
of Standard Model features. Among the topics we discuss are the implications of the K-
theory constraints, statistical correlations among physical quantities and an investigation of
the various statistical suppression factors arising once certain Standard Model features are
required. We estimate the frequency of an MSSM like gauge group with three generations
to be one in a billion.
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1. Introduction

The identification of MSSM-like string vacua is of obvious importance. Methods have been
developed to study compactifications in various corners of the string respectively M-theory
moduli space. The classes of models that have been discussed in most detail are certainly
Eg x Eg heterotic string compactifications (e.g. [I]-f]) and Type II orientifold models with
intersecting/magnetised D-branes (for references we refer to the most recent review [H]).
Despite the enormous effort put into this study and the unquestionable successes in
understanding the structure of these string models, we are still lacking a single fully realistic
candidate. Models have been found which naturally give rise to certain features of the
Standard Model, but all promising candidates have failed to be realistic at a certain step.



Before getting too desperate about these shortcomings, though, one should keep in mind
that the current search is restricted to very special corners of the overall configuration
space, namely those which are technically under good control such as toroidal orbifolds
or Gepner model orientifolds [§—f]. A scan of all possible models is still far beyond the
present state of the art. Therefore, the reason why no perfect model has been found yet
might simply be that there are too many string vacua and that the, say, one million models
encountered so far are only the tip of the iceberg of the enormous plethora of possible string
vacua.

The existence of a very large number of string vacua has found convincing support
recently by the study of flux vacua (for references see the review [f]). The fluxes induce
a superpotential which allows to freeze the former moduli fields related to the size and
shape of the underlying geometry. A rough estimate of the number of stable minima gave
that there might exist of the order of 10°%0 string vacua. During the last two years, this
huge number has triggered new ideas both on fine tuning problems in particle physics and
cosmology and on the right approach towards the problem of identifying realistic string
vacua. In [LJ] it was advocated that, complementary to the model by model search, a
statistical approach to the string vacuum problem might be worthwhile to pursue. In fact
such an analysis could reveal insights into the space of string vacua which might eventually
provide some hints as to in which corner one should look for realistic models or may at
least give us an estimate of the abundance of Standard-like models. We might even have
to face the prospect that such a statistical analysis is the best we can ever do.

There exists a still growing collection of work dealing with the statistics of both Type
II and M-theory flux compactifications. In these studies the statistical analysis is mostly
concerned with the gravitational (closed string) sector of the vacua, see e.g. @7@]‘1
Comparatively little is known about the statistics in the gauge sector of the theory [P6, BT,
B, B§-BI]. Of course these two sectors are not unrelated, as, like in Type II, many open
string couplings also depend on the closed string moduli and therefore on the fluxes freezing
them. Even more drastically, the closed sector back-reacts on the open string sector giving
rise to supersymmetry breaking and induced soft-terms on the branes [B3-Bd]. These are
all phenomenologically very important and string theoretically very involved issues, which
in a really complete statistical analysis have to be taken into account. However, practically
such a thorough analysis is beyond our understanding of the theory and therefore has to
wait until these points are better and more generally understood.

As in our first analysis [R§], in this paper we follow a more modest approach and try
to investigate for a quite well understood concrete example the statistical distributions of
some of the main quantities of the gauge theory sector like the rank of the gauge group
or the number of generations. More concretely, we study supersymmetric intersecting D-
brane models on the ZQTTGZQ orientifold background, which has enjoyed great interest in
the past (see e.g. [B7]—[l] among many others). We consider the ensemble of solutions
to the tadpole cancellation conditions using a special class of supersymmetric, so-called
‘factorizable’, D-branes.

I Criticism of the landscape idea is expressed in @, @}



In general there will appear a D-term potential which contains scalar fields charged
under the U(1) gauge symmetry and Fayet-Iliopoulos terms depending on one half of the
closed string moduli fields (complex structure moduli for Type ITA and Kéhler moduli for
T-dual Type IIB models). Therefore, at this level one expects to get a moduli space of
vacua, parameterised by combinations of closed and open string scalars and containing
regions with different gauge symmetry and chiral matter content. As a result, it is not so
clear what one should actually count as a string vacuum. Our attitude is that we are not
really counting different unconnected string moduli spaces but we are counting regions in
the moduli space with different gauge groups.

Turning on a charged open string modulus corresponds geometrically to a recombina-
tion process of branes and therefore leads in general to curved objects outside our class
of flat factorizable branes. On the other hand the inclusion of supersymmetric three-form
fluxes (in the Type IIB picture) might lead to p-terms for some of the charged non-chiral
fields and therefore freeze some of the open string moduli. It seems that the best we can do
at the moment is to count solutions of the tadpole cancellation and K-theory conditions in
the restricted set of supersymmetric branes one can actually describe. Since we are doing
statistics we are confident that the distributions we find are relatively stable against the
inclusion of a larger set of branes.

In [R§] we have mainly used the saddle point method to derive the distributions and
correlations of various physical quantities and for eight- and six-dimensional toy models
we could confirm this technique against a brute force computer search. For the most
interesting four-dimensional models the saddle point method also became more involved
and time consuming and at the same time a brute force computer search could not be
carried out in, say, a couple of weeks. Moreover, in [R§ we had not taken the additional
K-theory constraints [J] into account.

In this paper we report on the results of an extensive computer search involving several
computer clusters looking for supersymmetric models which satisfy both the tadpole and
the K-theory constraints. Using this large set of data we will statistically analyse the
question: Among all these models, what is the percentage satisfying certain Standard Model
requirements, like Standard Model or Pati-Salam gauge group, a massless hypercharge and
three fermion generations?

The very special framework of open string models on which our analysis is based imme-
diately raises a crucial question: How generic are our results in the complete moduli space
of string theory? A trustworthy answer of this question can only be given by comparing
the analysis of this article to analogous statistical results in corresponding corners of the
landscape. In view of the current status in the systematic exploration of string vacua,
progress seems difficult to make. As a very first step into this direction, we attempt a com-
parison of our large volume statistics and the small radius Gepner models of [§] wherever
the two sets of data are compatible. In particular we distinguish between topological and
geometrical observables and analyse how their distributions differ (or not).

The paper is organized as follows: Section P reviews the well known properties of the
class of models we are considering. We give details about the tadpole, supersymmetry and
K-theory constraints that arise in general and about the additional conditions we get from



requiring Standard Model-like properties. In section fJ we explain the implementation of
the problem in algorithmic form, suitable for a systematic computer analysis. Furthermore
we address the issue of finiteness of the number of solutions. Section [] contains the results
of our computer search in form of statistical distributions, while in section [ we analyse
these distributions focusing on the correlation of variables. In section | we summarize our
conclusions and give an outlook to further directions of research.

2. Model building ingredients

2.1 Parameterisation of Type II orientifolds

Orientifolds with magnetised D-branes are T-dual to orientifold models of intersecting D-
branes. Although the inclusion of three-form fluxes is better understood in the Type 1IB
picture, the general models will be presented in the Type IIA picture with intersecting
D6-branes, where many quantities have a geometrical interpretation at least for vanishing
three-form flux. This is the case on which we concentrate in this work.

In the Type ITA language the orientifold action is taken to be 25, where & is an
anti-holomorphic involution on the compact six-dimensional space preserving three-cycles
IIog. The R-R charge of the O6-planes has to be cancelled by a suitable set of stacks of
N, D6-branes wrapping the three-cycles II, and their Q& images IT;,. The R-R tadpole
cancellation condition can be written simply as

k
3" Nu (T, +1IL,) = 4Tlox, (2.)

a=1

The homology group Hsz(M) can be decomposed into its Q& even and odd parts,
H3(M) = Hff (M) ® Hy (M). If af € Hf (M) and 8; € H; (M) form a symplectic basis,
ie. arofBy =0y, afoay = pfrofy=0with I,J € {1,...,ha1 + 1}, any cycle can be
expanded as

S - S - 1.
I, = X,@d+ Y3, II,=X,ad-Y,3 Tlog= §L&. (2.2)
Here X,a = ?ZH X!ay and X!, V! are integer valued expansion coefficients.
The supersymmetry conditions read
WEU) =0, XU >0, (2.3)

where Uy = faz Q3 are the complex structure moduli and Fj = fﬁ] Q3.

The intersection number between two cycles is given by
Iab = Ha o Hb = fa% - X},Y;‘l. (24)

The general chiral spectrum is computed from the intersection numbers as shown in table [l



reps. multiplicity || reps. multiplicity
(I aa’ — 1 a06)

(Iaa/ + Ia06)

(N, Ny) Iap Sym

N—= N

(Na, Nb) Iab/ Antia

Table 1: Multiplicities of the chiral spectrum from the intersection numbers.

2.2 Gauge anomalies and K-theory constraints

Using table ] and (B.4) one can compute that the cubic SU(N,) gauge anomalies vanish if
the tadpole cancellation condition (B.1)) is satisfied.
Mixed abelian anomalies on the other hand do occur. The mixed gauge anomaly, for

example, is of the form

Au)a—sumy)? ~ Nallap + Lay )C2(Np)
= —2N,Y, X,Cs(N,) (2.5)

up to terms which vanish upon tadpole cancellation. Cy(NVp) denotes the quadratic Casimir
operator of the fundamental representation of SU(Np).
A massless linear combination of abelian factors

U(l)massless = Z Lq, U(l)a (26)
exists for
Z xaNa?a = O, (2.7)

as can be easily seen from (R.5§). More details can be found in [&]].

Although the tadpole cancellation condition ensures the absence of cubic non-abelian
gauge anomalies and mixed and cubic abelian gauge anomalies are cancelled by a gener-
alized Green-Schwarz mechanism, there exists one further model building constraint [fZ]
due to a Zs-valued conserved quantity, the K-theory charge. This quantity can be seen by
introducing a probe Sp(2) ~ SU(2) brane. If the K-theory charge conservation is violated,
there occurs a global gauge anomaly. This anomaly is manifest as the existence of an odd
number of chiral fermions transforming in the fundamental representation of Sp(2) [{4].

2.3 The T%/(Zy x Z3) model

Factorizable three-cycles in a toroidal background are parameterised by their wrapping
number (n;,m;), i € {1,2,3}, along the basic one-cycles (mg;—1,m2;) of H?:1 T?. Two
different shapes per two-torus T? respect the Q& symmetry z° — z° and they are parame-
terised by b; € {0, 3},

QG : i1 — o1 — 2b; o, QG : my; — —To;. (28)



It is convenient to work with the 2 even combination
Toi—1 = T2i—1 — bjmo;, (2.9)

because this modification does not change the computation of basic cycle intersection num-
bers (although only 1%,)1_ Troi—1 lies in the torus lattice).

The effective overall wrapping numbers of the three-cycles are conveniently parame-
terised by the integers

XO = l;nl nans, }>0 = Bﬁll Thg T~n3, (2.10)

X' = —bnging g, Y= —bmynjng,  i,5,k € {1,2,3} cyclic,

where m; = m; + b; n; is the effective wrapping number along 7o;_1 and b= [(1—=01)(1—
bo)(1—b3)]~!. Observe that as in [2§] we have included a minus sign in the definition of X;
and Y; for i = 1, 2,3. Furthermore due to the overall scaling factor l;, which we introduce to
obtain integer valued quantities also for tilted tori, the intersection numbers are computed
from

I = b2 <Xa}7b — Xb?a) . (2.11)
In terms of these quantities, the supersymmetry condition reads
3 1 3
d»vi—=o0, > X'Ur>o, (2.12)
where the U are defined in terms of the torus radii as
Up=RYRPR® 1, = RVRVRWP, i j ke {1,2,3} cyclic. (2.13)

The tadpole cancellation condition is given by

D NXD = 8b,
a

. 8
> NXi =< o ie {123}, (2.14)
a — U

i.e. we have L = L (b, (1 — b;)~1)T with L = 8. The effective wrapping numbers can easily
be rewritten in the original unscaled wrapping numbers along the basic three-cycles via
the relations (i, j,k € {1,2,3} cyclic)

§0 _ 150
Xt = n;M;my = b1 <—XZ + bjf/k + bk?j + bjka0> ,

3 3
Yo = mimeoms = 8_1 (?O + Z bZXZ — Z bjbkf/i — b1b2b3X0> R
=1 =1

Yi = min;ng = i)_l <—}Aﬂ - bZXO) . (2.15)



These quantities are needed to implement the coprime condition on the sets (n;, m;) of the

wrapping numbers per two-torus,

3
(Y0)? = [ ecd (Yo, Xi). (2.16)
=1

However, for computational convenience we will work with the rescaled wrapping num-
bers (R.10), which fulfill the same multiplicative relations as the original ones,

Xyt = X7v7 forall I,J €0,...,3}, (2.17)
XIR7 = _yRyL XLYLY? = _RIXIRE, PLRL2 = _VIPIVE,
where on the second line I, J, K, L are permutations of {0,...,3}.
The number of chiral (anti)symmetric representations of some U(N,) factor is given
in table [l If one imposes for phenomenological reasons the constraint #(Sym,) = 0, this
leads to #(Anti,) = _B%X SYC? and one can distinguish two cases:

1. #(Anti,) = #(Sym,) = 0, where for some permutation (I, J, K, L) of (0,...,3) we

have the relations on supersymmetric factorizable branes

vi=v/=xK=XI—o, XIX) = _vEyE 4o,
VELE vyt =0, KUK =LtUT. (2.18)

These are the types of branes occurring also in compactifications to six dimensions
as explained in [Pg].

2. #(Antig) # 0,#(Sym,) = 0: in this case X! # 0 for all I € {0,...,3} and the
constraint on the vanishing net number of chiral symmetric representations can be
rephrased as

Q~

1
> —L' =16, (2.19)
I:OX

while (2:19) has to be fulfilled.

The D-brane configurations discussed so far support U(N,) gauge factors. In addition,
there exist four different kinds of Sp(XV,) gauge factors, each of them descending from
branes wrapping the Qa6*w! (k,1 € {0,1}) invariant planes, where # and w are the two
orbifold generators. The wrapping numbers of these branes are (4,7, k € {1,2,3} cyclic)

X0 =0 X'=X2=X*=0 o X'= X=X/ =Xx*=0y,

vi =0 forall . (2.20)

The K-theory constraints on consistent chiral spectra demand that there must be an
even number of chiral fermions transforming in the fundamental representation of any pos-
sible Sp(2) factor. Inserting the wrapping numbers of all four Sp(2) candidates into (R.11)



and summing over all U(N,) factors, the K-theory constraints take the form
Y NJY) € 22,
a
(1=b)(1 = b)Y N € 2Z, i, 4,k € {1,2,3} cyclic. (2.21)
a

2.4 Standard Model realisations

particle mult.
U(3)a x Sp(2)p x U(1)e x U(1)g with Q47
QL (3,2)00 Tap
UR (3,1)—1,0+ (3,1)0,-1 Tore+ 1ga
dr (3,10 + (3,1)0,1 Tye + Toa
dr (834,1)0,0 +(Loar + 1a06)
L (1,2)_1,0 + (1,2)0,—1 Iye + Iyg
eR (1,1)20 s — Ieog)
eRr (1,1)02 $(Lawr — Taoe)
€R (1,1)11 Lea

U(3)a x U(2)y x U(1), x U(1)g with Q'
QL (3,2)0,0 Iy,
QL (3,2)0,0 Loy

uR (3,1)-1,0+ (3,1)0,—1 I+ Ia

§7 1)0,1 T+ Ioa

0,0 2 (Loar + Lo06)

(
)

L (1,2)-10 + (1,2)0,-1 Tpe + I
(

1,2)0,-1 Iy + Iyg

€R (1,1)20 $(Ieer — Ieog)
€R (1,1)02 $Law — Lioe)
eR (1,1)11 Lear

Table 2: Realisation of quarks and leptons for various hypercharges. Part 1.



particle

mult.

U(3)a x U(2)y x U(1), x U(1)g with @\

QL

Iab

%(Iaa’ + Ia06)

Ia’c + Ia’d

Ia’c’ + Ia’d’

Iype + Ipg

Ty + Tpar

€R

— 2 (Lo + Iyos)

U(3)a x U(2)y x U(1), x U(1)g with Q'

QL (3,2)0,0 Tap
uR (34,1)0y0 (Loar + 1a06)
dr (3,1)-10 Ioe
dr (3,1)10 Iy
L (1,2)0,-1 Iy g
€R (1,14)00 — 5Ty + Tros)
€R (1,1)11 Leq
eRr (1,1)_1, Iog

Table 3: Realisation of quarks and leptons for various hypercharges. Part 2.

For a Standard Model like sector of y quark and lepton generations in a four stack
intersecting D-brane model, the gauge group has to contain one of the two following factors

1. U(3)q X Sp(2)p x U(1)e x U(1)4

2. U3)y x U(2)p x U(1), x U(1)q

with #(Sym,) = #(Sym,) = 0 in order to have no exotic symmetric chiral matter of the
two non-abelian factors. The first stack is therefore of the type (B.1§) or (B-19), the second
can also be of the form (2.2(). In some cases, the Standard Model quantum numbers can
also be realised on three stacks only at the cost of having no standard Yukawa couplings

(which are not always realistic in the four stack models either).

Up to an interchange of cycles and their {26 images, there exist three different possible

definitions of the hypercharge for quarks and left-handed leptons:




1. The ‘standard’ definition Qg,s) = %Qa—k %Qc—l— %Qd, valid for both choices of an Sp(2),,
or U(2), factor. This hypercharge is massless if Yo+ Yo+Yy=0.

2. The first ‘non-standard’ definition Qg/l) = —%Qa — %Qb, where right-handed up-type

quarks are realised as antisymmetric representations of U(3), [, ff]. In order for

this hypercharge candidate to be massless, Y.+ Y, =0 has to be satisfied.

3. The second ‘non-standard’ definition Qg) = —%Qa - %Qb + @4, where again right-
handed up-type quarks are realised as antisymmetric representations of U(3),. Yo+

?b - ?d = 0 is the condition for this abelian factor to remain massless.

The ‘standard’ definition of the hypercharge on four stacks admits the realisation of all
Standard Model particles as bifundamental representations, thereby ensuring the existence
of Yukawa couplings from triangles of three intersecting branes. This case can be reduced
to a three stack model by simply replacing %(Qc +Qq) — %Qc

The first ‘non-standard’ definition also has a direct reduction to three stacks since
Q. and Q4 do not appear in the definition of Qg,l). On the other hand, the second ‘non-
standard’ definition really requires four stacks of branes.

The corresponding realisations of the Standard Model quarks and leptons are given
in tables | and [§. Apart from the listed particles, there exist candidates for right handed
neutrinos and Higgs multiplets for each possible hypercharge.

Having x¢ generations of quarks amounts for the first case to setting

1
XQ = Iab = Ialc + Ia’d = Ia’c’ + Ia’d’ —+ §(Iaa’ + IaOG) (222)
and yr, lepton generations occur for

1 1
XL = Ive + Ipqg = §(Icc’ —I.o6) + g(fdd' — Iq06) + Lea- (2.23)

For the remaining cases, the analogous formulae can be read off from tables fl and .

3. Computer algorithms

We have defined the wrapping numbers X! and Y/ as integer valued quantities in order
to implement the supersymmetry (R.19) and tadpole (R.14) conditions in a fast computer
algorithm. From the equations we can derive the following inequalities

3 3
0<ZXIU[§Z£IU[. (3.1)
=0 1=0

In a first step possible values for the wrapping numbers X! and Y/ are computed
using (B.J)) for a fixed set of complex structures.

In a second step we use the tadpole equations (R.14), which after summation can be
reduced to

Y Sa=C with S,=) NU/ X, and C=> L'Us. (3.2)
a I I

,10,



The algorithm to find solutions to these equations computes all possible partitions of
C and factorises them into possible values for N, and X I taking only factorizations into
account which match the values generated in the first step. The results obtained in this way
have to be checked again if they satisfy all consistency conditions, especially the K-theory
constraints.

3.1 Number of solutions

It is an important question whether or not the number of solutions is infinite, because a
statistical statement can only be of significance if we are dealing with a finite set of models.
Unfortunately we have not been able to give a complete analytic proof of finiteness of the
considered space of models, but we have good numerical hints towards this assumption.

As explained in [2§], it is sufficient to analyse the possible configurations of wrapping
numbers for models in which all X/ are non-vanishing. The tadpole equations can then be
shown to admit only a finite number of supersymmetric configurations for a fixed choice
of rational complex structures and fixed L. The difficult question is which complex struc-
tures are compatible with the consistency conditions. For toroidal compactifications to
six dimensions it is possible to give an upper bound for the complex structures in terms
of L. In the four-dimensional case, however, it is not immediately clear how to achieve
this. Figure [l shows how the total number of mutually different brane configurations for
L = 2 increases and saturates, as we include more and more combinations of values for
the complex structures Uy into the set for which we construct solutions. For this small toy
value of L our algorithm actually admits pushing the computations up to those complex
structures where obviously no additional brane solutions exist.

For the physically relevant case of L = 8 the total number of models compared to the
absolute value ](7 | of the complex structure variables scales as displayed in figure f]. The
plot shows all complex structures we have actually been able to analyse systematically. We
find that the number of solutions falls logarithmically for increasing values of |U|]. In order
to interpret this result, we observe that the complex structure moduli U; are only defined
up to an overall rescaling by the volume modulus of the compact space. We have chosen all
radii and thereby also all U to be integer valued, which means that large |U' | correspond to
large coprime values of Rii) and Réi). This comprises on the one hand decompactification
limits which have to be discarded in any case for phenomenological reasons, but on the
other hand also tori which are slightly distorted from square tori, e.g. for Réi) / Rgi) = 0.99.

Combining the results of the two numerical tests we have reason to hope that we can
indeed make a convincing statistical statement using the analysed data. Nevertheless, at
this point it should be mentioned that we cannot fully exclude that a large number of new
solutions appears at those values for the complex structures which we have not analysed.

3.2 Complexity

The main problem of the algorithm used to compute the models lies in the fact that its
complexity scales exponentially with the complex structure parameters. Therefore we are
not able to compute up to arbitrarily high values for the U;. Although we tried our best,
it may of course be possible to improve the algorithm in many ways, but unfortunately the

— 11 —
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Figure 1: The number of different configurations of X! for L =2, satisfying the constraints. The
x-axis shows combinations of complex structures in an arbitrary scale.
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Figure 2: The number of models for L = 8, plotted against the absolute value of U. The highest
analysed value of U is 12.

exponential behaviour cannot be cured unless we might have access to a quantum computer.
This is due to the fact that the problem of finding solutions to the diophantine equations
we are considering falls in the class of NP complete problems [[f7], which means that they
cannot be reduced to problems which are solvable in polynomial time. In fact, this is quite
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a severe issue since the diophantine structure of the tadpole equations encountered here is
not at all exceptional but very generic for the topological constraints also in other types of
string constructions.

For the total number of models analysed in this paper, which is around 1.66 x 102,
we used several computer clusters built out of standard PCs with an approximative total
CPU time of roughly 4 x 10° hours. To estimate how many models could be computed in
principle using a computer grid equipped with contemporary technology in a reasonable
amount of time, the exponential behaviour of the problem has to be taken into account.
Let us be optimistic and imagine that we would have a total number of 105 processors at
our disposal which are twice as fast as the ones we have been using. Expanding our analysis
to cover a range of complex structures which is twice as large as the one we considered
would in a very rough estimate still take us of the order of 500 years.

Note that in principle there can be a big difference in the estimated computing time for
the two computational problems of finding all string vacua in a certain class and of singling
out special realistic ones. Apparently, for the second question, having Standard Model
features realized by just a subset or even a single stack of branes, the search algorithm
can work recursively by successively imposing more Standard Model features. It would be
interesting to know whether the Standard Model search can be performed by an algorithm

which is polynomial.

4. Statistical distributions

4.1 Effect of the K-theory constraints

Using the explicit constructions obtained by the computer algorithm, it is possible to
quantify the effect of imposing the K-theory constraints (R.21]). The overall effect of the
additional constraints is to suppress the number of possible brane configurations by a factor
of five. For example in the case without flux considered in this article, i.e. L = 8, and for
complex structures Uy = 1VI and non-tilted tori, we get approximatively 1.3 x 10% models
if we do not impose the constraints and ca. 2.3 x 107 models enforcing them.

Because the distribution of models is highly dominated by configurations where the
value for Y7 is 0 or 1 (in agreement with the observation that only 1.6% of all models live
on tilted tori), one expects that the constraints of equation (R.21]) suppress models with odd
total rank. This is indeed the case as can be seen in figure B(a)l Note that the distribution
shown is limited to the case of all complex structures chosen as U; = 1, but different values
of the complex structure change only the maximum and width of the distribution, not its
shape, which is therefore generic.

By contrast, other observables are more or less unaffected by the inclusion of K-theory
constraints, for example the frequency of models containing at least one gauge group U(M),
as shown in figure (as above the distribution for one specific value of the complex
structures is generic). This is due to the fact that the constraints do not limit the individual
brane configurations but only the overall composition of them to form a consistent model.
In both cases the supersymmetric brane configurations are dominated by stacks of a small
number N, of branes.
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Figure 3: Probability distributions for L = 8, Uy = 1. The stars represent the distribution without
K-theory constraints, the boxes give the result including the constraints.
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Let us compare the overall suppression of models by the K-theory constraints to the
analogous results for Gepner Models 26, i§. Unfortunately, a direct comparison of our
gauge statistics and the Gepner Model data is not possible, since the abundance of solutions
at the Gepner point forced the authors to restrict their search a priori to Standard Model
like vacua. The effects of implementing also the above K-theory constraints for this class
of vacua are analysed in [[I§], resulting only in a practically negligible suppression factor.
The discrepancy is even more striking if one considers that the number of symplectic
branes and therefore of additional K-theory constraints in many, though not in all of the
Gepner orientifolds is much higher than on our toroidal orbifold. However, the MSSM-like
models analysed on the Gepner side satisfy very strong constraints, in particular the U(1)y
massless condition (cf. equation (R.7)). We have reason to infer that these requirements a
priori rule out most of those models which violate the K-theory constraints.

4.2 Correlations between the total rank of the gauge group and chirality

We find a correlation between the rank of the gauge group and the mean chirality of the
model, which we have defined as

~ S50 2 ~ SN
— _ 2 _ j : -2
X = <Ia/b — Iab> = b <2YaXb> = m b YaXb. (41)
a,be{l1,...k}
b<a

In this respect the explicit computer search confirms the results obtained via a saddle point
approximation in [R§.
As can be seen in figure [l, the K-theory constraints do not change the overall shape

of the distribution except for a suppression of models with odd total rank, as already seen

in figure B(a)}
4.3 Statistics of Standard-like models

An analysis of the possible realizations of models with MSSM-like features, as described
in section P.4, shows a surprising result: We do not encounter any three-generation Stan-
dard Model in our analysis. As displayed in figure the only configurations we have
found exhibit one, two or four generations, with a strong statistical domination of the
one-generation models.

Given the fact that models with three generations have been constructed explicitly in
our setup (see e.g. [i9, B0]) this might appear as an incorrect result at first sight. The
important point to notice here is that all three-generation models known to us share the
property that they need values for the complex structures which in our conventions are
very large and out of the reach of our computer analysis. Another issue not to be neglected
is that most of the models considered in the literature make use of some special features
like brane recombination, brane splitting (breaking of higher rank gauge groups) etc. From
this observation and the arguments in section B.1 we might draw the conclusion that three-
generation models are statistically very highly suppressed in this specific orbifold setup.
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Figure 4: The frequency distribution of models of specific rank and chirality. L = 8,U; = 1.
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Figure 5: Logarithmic plot of the number of models versus the number of generations.
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4.4 Massless hypercharge

To gain some further insight into the distribution of Standard Model-like properties, we
have performed an analysis of our models that includes all constraints for MSSM-like
models except for the condition of having a massless hypercharge U(1)y. Furthermore we
allow for a different number of generations in the quark and lepton sector. The resulting
distribution for different numbers of quark and lepton generations in shown in figure fj.

From the phenomenological point of view these models are of course not extremely
useful because the massless U(1)y condition is important for a consistent MSSM struc-
ture, but the result is nevertheless quite interesting, as it turns out that even within this
relaxed framework no three generation model can be found. The closest we can get to a
three-generation model is a configuration with three generations of quarks and four lepton
generations.

Log(# nodel s)

Figure 6: Logarithmic plot of the number of models with Standard Model characteristics, not
including the condition for a massless hypercharge, depending on the number of generations in the
quark (Qr) and lepton (L) sector.
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4.5 Pati-Salam models

In addition to the direct realisation of MSSM models we also analysed the occurrence of
models with a Pati-Salam gauge group

SU(4) x SU2)1, x SU(2)x. (4.2)

As can be seen in figure 5(b), we get one-, two-, four-, six- and eight-generation models, but
again no model with three generations. Also in this case there exist explicit constructions
of three-generation Standard Models in the literature [p{] and our conclusions are the same
as in section [L.J - the statistical suppression of three generation models is extremely large.

4.6 Statistics of the hidden sector

An interesting question in a statistical context concerns the properties of the hidden sector
of our models. In figures and the distribution of the total rank of the gauge
group and the frequency of models containing a U(M) gauge factor in the hidden sector
are compared with the results one obtains from an analysis of all models considered.

As it turns out the distributions of the constrained models differ only very little from
those of the full set. The small deviations which are visible in the plots cannot be regarded
as indications of fundamentally different behaviour. They must be seen rather as a remnant
of the statistical analysis, which looses its applicability in the region of very high rank of
the gauge groups where the number of models is very small as compared to the region of
lower rank.

This suggests that the statistical distributions are not affected by the additional con-
straints of requiring a specific configuration in the visible sector. This observation gives
some hints about the correlation of variables, which will be explored in greater detail in
the section ff.

A comparison of the distribution of the total dimension of the gauge group in the
hidden sector of Standard Model-like configurations with the results for Gepner models
in [§ shows two quite similar pictures. In figure we give the complete distribution,
in we allow for maximally three branes in the hidden sector in order to make the result
better comparable to [§, where a similar cutoff was imposed for computational reasons.
The main difference comes from the fact that we have much fewer models in our ensemble
and, more importantly, our models are not constrained to three generations.

4.7 Gauge couplings

The observables considered so far all belong only to the topological sector of the model in
that they are defined by the wrapping numbers of the branes and manifestly independent
of the geometric moduli of the compactification manifold. A quantity which is relatively
easy to analyse but which does contain geometrical information are the gauge couplings in
the visible sector. In [p]]] it was argued that a MSSM model built with intersecting branes
naturally leads to a relation between the coupling constants,

INEINEE "

ay Jas
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Figure T: Frequency distributions of all models (empty black boxes) and in the hidden sector of
MSSM models (red stars), MSSM models without restriction to a massless U(1) (green diamonds)
and Pati-Salam models (blue triangles).
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Figure 8: Logarithmic plots of the number of models with Standard Model gauge group and
massless U(1) depending on the dimension of the gauge group G in the hidden sector.

where ay/s/,, are the couplings of the hypercharge, the strong and weak sector respec-
tively. Note that this relation of the coupling constants does not imply that these models
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automatically exhibit full gauge unification, but it could fit into an SU(5) framework.

For an honest check of this relation we would have to use the renormalization group
equations and evolve the coupling constants from the string scale down to their low energy
values. In our analysis we have not done so, but investigated instead the relation between
the couplings at the string scale. Therefore we can only get some hints towards the actual
relation at lower scales.

To calculate the gauge couplings we use the expression derived in [FI] for the gauge
coupling of a stack a in an intersecting brane model, which reads in our conventions

1 ¢ 1 >
—=— — > " X'u;. (4.4)
T R
The constant c is given by
1 MPlanck
c= ——722 4.5
2v2 M, (4.5)

and kg is 1 for an U(N) stack and 2 for a SO(2N) or Sp(2N) stack. Note the explicit
dependence on the complex structures.

For the coupling of the hypercharge ay, we have to consider the contribution from
all stacks of branes in the visible sector and distinguish the three different possibilities we
consider for a MSSM configuration, as explained in section P.4. Using

1 1
— =) 2Njz?— 4.6
ay ZZ: iy O‘i, ( )
we get for the three configurations
1 11 11 11
"6a, 20, 20a4
1 21 1
— =K 2. - — 4+ — (4.7)
ay 3 Qg Qp
21 1 1
3. -—+—+2—
3a, o oy

In figure ] the distribution of the ratio as to a, is displayed. We find that only for
2.75% of all models s = ay, at the string scale and that the weak coupling constant is
generically larger than the strong one.

Figure [L( shows the different values for sin? 6, depending on the ratio of ay/ay,. The
red line represents the ratio given in (@) sin? @ is calculated from

ay

sinf = ————
ay + oy

(4.8)
We find that 88% of the models obey the relation ([l.J). Note that this result might be a
bit obscured by the plot because it shows one dot for every possible value, not taking into
account that there exist many models with exactly the same values. In fact there exist
many more models with low values for a4/, and sin?€@, which happen to be the ones
fulfilling the relation.
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These results can also be compared with the analysis of [§], where as in the case of the
hidden gauge group one has to take into account that we are dealing with a smaller ensemble
and with models that are not constrained to exactly three generations of fermions. The
fraction of MSSM-like Gepner models satisfying (f.9) is found there to be only ca. 10%.
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Without wanting to over-interpret this mismatch, we emphasize once more that the gauge
couplings are not part of the topological sector of the theory and that therefore deviations
between the small and large radius regime fit into the general picture.

5. Correlations

In this section we investigate the correlation between different observables in greater detail.
As analysed in section [I.6, the statistics of the hidden sector of MSSM-like and Pati-Salam
models are, on a statistical basis, very similar to the full statistics of all models. The
same is also true for the non-trivial correlations between observables in our models. This
is shown in figure [[1] for the example of the correlation between mean chirality and total
rank of the gauge group, as discussed in section [£3.

Putting these hints together we might conclude that the ‘atomic’ frequency distri-
butions actually do not depend on the specific kind of models chosen (e.g. MSSM-like,
Pati-Salam or something else), but only on a generic distribution which is already present
in the completely unconstrained setup.

To make this statement more quantitative, we calculate the frequencies for some atomic
properties important for model building. In particular, we check whether two properties A
and B are statistically independent in the ensemble of D-brane models. A good measure
for statistical dependence is given by

P(A) x P(B) — P(AA B)
P(A) x P(B)+ P(AAB)’

Pap = (5.1)

As properties we choose the appearance of models with at least one U(3) or U(2)/Sp(2)
gauge factors or with at least one stack without symmetric representations.

The results are presented in figure [l depending on the number of stacks of the models
under consideration. Note that the frequency of finding U(1) stacks is close to one and
therefore does not lead to any further suppression for the appearance of a MSSM like
model. The plots demonstrate that, for sufficiently large numbers of stacks, the considered
properties are statistically independent and that therefore their frequencies simply multiply.
Note that this was an assumption in the statistical estimates carried out in the original
work [[I(]. The combined values (integrated over all models) for the correlation between the
properties of an MSSM-like model (without restriction to massless U(1)y) is 0.094, which
is reasonably low to justify considering the individual properties as essentially independent.

Having found that the constraints are statistically only very little correlated we can
make some predictions about the overall probability of configurations in our setup which do
not show up in the data like for example true Standard Models. In table ff we summarize
the factors coming from the various constraints. The two U(1) gauge groups required
for our Standard Model setup are not included, because, as mentioned, the frequency of
having one of them is essentially one. In addition we give the fraction of models - among all
configurations containing a U(3) x U(2) factor without symmetric representations - which
meet in addition the individual constraints of a massless hypercharge, of three generations
of quarks or of three lepton families.
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Restriction Factor

gauge factor U(3) 0.0816
gauge factor U(2)/Sp(2) 0.992
No symmetric representations 0.839
Massless U(1)y 0.423

Three generations of quarks 2.92 x 107°
Three generations of leptons | 1.62 x 1073
Total 1.3 x 107°

Table 4: Suppression factors for various constraints of Standard Model properties.

Multiplying all these factors leads to an overall suppression factor of
R~ 13x1077, (5.2)

i.e. only one in a billion models gives rise to a four stack D-brane vacuum with Standard
Model gauge symmetry and three generations of quark and leptons. Multiplying this with
the total number of models analysed, N ~ 1.66 x 108, leaves us with 0.21 true Standard
Models in our ensemble.

5.1 How good is this estimate?

To get some idea about the quality of this estimate we can apply the method used for three
generation models to Standard Model-like solutions we actually did find in our analysis.
The result of this computation for two and four family models is given in table | This
check clearly shows that our estimate gives the right order of magnitude of the number of
expected solutions, but the precise value might differ by several standard deviations.

# generations | # of models found | estimated # | suppression factor
2 162921 188908 ~ 1073
3 0 0.2 ~ 1079
4 3898 3310 ~2x107°

Table 5: Comparison between the estimated number of solutions and the actual number of solutions
found for models with two, three and four generations.

6. Conclusions

In this work we have given an explicit statistical analysis of the vacuum structure in
a specific example of Type II orientifold models. The bottom line is that a Standard
Model-like configuration with three families of quarks and leptons in this class of models
is statistically highly suppressed. The concrete models which have so far been constructed
in this setup can therefore be regarded as exceptional within the vast majority of possible
solutions. The same holds also for models with a Pati-Salam gauge group.
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A statistical analysis of the different observables shows that there exist non-trivial
correlations between some of them such as the rank of the gauge group and the chirality of
the models. Interestingly, these correlations hardly depend on whether we analyse them in
the full set of solutions or only in the hidden sector of some specific visible configuration.
In that respect, the hidden sectors of a Standard Model or Pati-Salam construction exhibit
universal behavior and we expect this to hold for any other visible sector as long as the
number of constraints it imposes is comparable.

Despite this general occurrence of correlations, we can quantitatively justify the hy-
pothesis that the basic properties of Standard Model-like constructions are to sufficiently
good accuracy independent. Under this assumption, we derive an estimate for the relative
frequency of three-generation Standard Models in our setup which is of the order of 10~7.
Of course, by requiring more of the phenomenological features of the Standard Model such
as Yukawa couplings, gauge couplings, soft supersymmetry breaking terms, the occurrence
of realistic models will get further reduced. However, these properties really depend on the
finer details of the models (see for instance [f3—FJ]) and an honest statistical treatment of
them is much harder to carry out.

An important question is how generic our results actually are. Even though the avail-
able data for both frameworks are only partially compatible, we have performed a rough
comparison with the statistics of the hidden sector of MSSM-like Gepner model orien-
tifolds [Rf] where possible. The geometrical properties of these small radius constructions
differ considerably from those of the large radius regime. However, the results seem to
suggest that the observables of the topological sector exhibit quite similar distributions.
This is not so surprising as the diophantine structure of the consistency conditions describ-
ing this sector is essentially the same for both frameworks and since, after all, topological
quantities should be protected against too drastic changes as one varies the coupling con-
stants or radii. In fact, we regard this as strong hints towards a universal behaviour in the
distribution of the topological observables also in other string constructions. By contrast,
the distribution of the gauge couplings, which are dependent on the geometric moduli of
the theory, do differ. It would be very desirable to collect more evidence supporting this
picture.

For this purpose it is important to study the statistics of other quite well understood
classes of models like for instance heterotic string compactifications on elliptically fibered
Calabi-Yau manifolds (see for instance [5G, B, b1, B§). Questions in this direction include:
Does the distribution of the rank of the gauge group qualitatively have the same shape?
What is the abundance of Standard like models? In addition, as we started to investigate
in our first paper [2§], it would be interesting to combine the T-dual picture of magnetised
branes with additional three-form fluxes [59, b0, 9, b1] and determine the effect on the
statistics.
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